Download Implementing Cisco IP Routing Foundation Learning Guide PDF

TitleImplementing Cisco IP Routing Foundation Learning Guide
File Size11.0 MB
Total Pages765
Table of Contents
                            Copyright
	Warning and Disclaimer
	Trademark Acknowledgments
	Corporate and Government Sales
	Feedback Information
	Dedications
About the Author
About the Contributor
	About the Technical Reviewers
Acknowledgments
Icons Used in This Book
	Command Syntax Conventions
Chapter 1. Routing Services
	Complex Enterprise Network Frameworks, Architectures, and Models
		Traffic Conditions in a Converged Network
		Cisco IIN and SONA Framework
			Cisco IIN
			Cisco SONA Framework
			Figure 1-1. Cisco SONA Framework.
		Cisco Network Models
			Cisco Enterprise Architecture
			Figure 1-2. Cisco Enterprise Architecture.
			Cisco Hierarchical Network Model
			Figure 1-3. Cisco Hierarchical Network Model.
			Figure 1-4. Hierarchical Model Applied to the Enterprise Campus.
			Figure 1-5. Hierarchical Model Applied to a WAN.
			Cisco Enterprise Composite Network Model
			Figure 1-6. Enterprise Composite Network Model Functional Areas.
			Figure 1-7. Modules Within the Enterprise Composite Network Model.
			Figure 1-8. Multiple Buildings Represented Within the Enterprise Campus.
	Creating, Documenting, and Executing an Implementation Plan
		Approaches to Creating an Implementation Plan
		Creating an Implementation Plan
		Implementation Plan Documentation
		Implementation Plan Example
			Example Network Scenario
			Example Network Requirements
			Example Network Implementation Plan
			Table 1-1. Project Contact List
			Table 1-2. Equipment Floor Plan
			Table 1-3. Tools Required
			Table 1-4. Implementation Task List
	Reviewing IP Routing Principles
		IP Routing Overview
			Principles of Static Routing
			Figure 1-9. Configuring Static Routing.
			Configuring a Static Route
			Table 1-5. ip route Command
			Table 1-6. Administrative Distance of Routing Protocols
			Configuring a Static Default Route
			Figure 1-10. Configuring the Static Default Route.
			Example 1-1. show ip route Command
			Principles of Dynamic Routing
			Figure 1-11. Routers Running a Dynamic Routing Protocol Exchange Routing Information.
			Example 1-2. Configuring RIP
			Principles of On-Demand Routing
			Configuring ODR
			Figure 1-12. Hub-and-Spoke Topology: Configuring ODR.
			Example 1-3. Routing Table with ODR Routes
		Characteristics of Routing Protocols
			Distance Vector, Link-State, and Advanced Distance Vector Routing Protocols
			Classful Routing Protocol Concepts
			Classful Routing Protocol Behavior
			Figure 1-13. Network Summarization in Classful Routing.
			Summarizing Routes in a Network with Discontiguous Subnets
			Figure 1-14. Classful Routing Protocols Do Not Support Discontiguous Subnets.
			The ip classless Command
The Routing Table Acts Classfully
	Classless Routing Protocol Concepts
	RIPv2 and EIGRP Automatic Network-Boundary Summarization
	Figure 1-15. Automatic Network-Boundary Summarization.
	Figure 1-16. RIPv2 Summarizes By Default; OSPF Does Not.
	Figure 1-17. Effect of the no auto-summary Command for RIPv2.
	RIP
		Characteristics of RIPv1
		Characteristics of RIPv2
		RIP Configuration Commands
		Figure 1-18. RIPv2 Configuration Example.
	Populating the Routing Table
		Administrative Distance
		Figure 1-19. Route Selection and Administrative Distance.
		Routing Protocol Metrics
		Criteria for Inserting Routes into the IP Routing Table
		Floating Static Routes
		Figure 1-20. Floating Static Routes.
	IP Routing Protocol Comparisons
		Table 1-7. Protocols, Ports, and Reliability of Routing Protocols
		Table 1-8. Routing Protocol Comparison
	Routing and Routing Protocols Within the Enterprise Composite Network Model
		Figure 1-21. Multiple Routing Protocols May Be Used Within a Network.
		Table 1-9. Example Routing Protocol Comparison
	Summary
	Review Questions
Chapter 2. Configuring the Enhanced Interior Gateway Routing Protocol
	Understanding EIGRP Terminology and Operation
		EIGRP Capabilities and Attributes
			Figure 2-1. EIGRP Is a Transport Layer Function.
			Figure 2-2. EIGRP Performs Route Summarization by Default.
		EIGRP Terminology
		EIGRP Operation
			Populating EIGRP Tables
			Figure 2-3. EIGRP Maintains a Neighbor Table, a Topology Table, and a Routing Table.
			Neighbor Table
			Topology Table
			Routing Table
			EIGRP Packets
			EIGRP Hello Packets
			EIGRP Neighbors
			Neighbor Table Contents
			Example 2-1. Sample Output for the show ip eigrp neighbors Command
			EIGRP Reliability
			Initial Route Discovery
			Figure 2-4. Initial Route Discovery.
Split Horizon
	DUAL
		Advertised Distance and Feasible Distance
		Figure 2-5. EIGRP Chooses the Route with the Lowest Feasible Distance.
		Successor and Feasible Successor
		Figure 2-6. Router C’s Topology Table: Feasible Successor’s AD Must Be Less Than the Successor’s FD.
		Figure 2-7. With a Feasible Successor, EIGRP Can Recover Immediately from Network Failures.
		Figure 2-8. DUAL Ensures a Loop-free Network.
		DUAL Example
		Figure 2-9. DUAL Example, Step 1.
		Figure 2-10. DUAL Example, Step 2.
		Figure 2-11. DUAL Example, Step 3.
		Figure 2-12. DUAL Example, Step 4.
		Figure 2-13. DUAL Example, Step 5.
		Figure 2-14. DUAL Example, Step 6.
		Figure 2-15. DUAL Example, Step 7.
	EIGRP Metric Calculation
		Figure 2-16. The EIGRP Metric Is Backward Compatible with the IGRP Metric.
		Figure 2-17. EIGRP Metric Calculation Example.
	Planning EIGRP Routing Implementations
	Configuring and Verifying EIGRP
		Planning and Configuring Basic EIGRP
			Planning for Basic EIGRP
			Figure 2-18. Sample Network for Planning and Implementing Basic EIGRP.
			Requirements and Parameters
			Basic EIGRP Configuration
			Table 2-1. network Command Parameters
			Basic Configuration Example
			Example 2-2. Configuration of Router R1 in Figure 2-18
			Another Basic EIGRP Configuration Example
			Figure 2-19. Basic EIGRP Configuration Sample Network.
			Example 2-3. Alternative Configuration of Router A in Figure 2-19
			Example 2-4. Router A’s Interpretation of the Configuration in Example 2-3
			Example 2-5. Another Alternative Configuration of Router A in Figure 2-19
		Verifying EIGRP Operation
			Table 2-2. EIGRP show Commands
			Table 2-3. EIGRP debug Commands
			Figure 2-20. Sample Network for EIGRP Verification.
			Example 2-6. Configuration for Router R1 in Figure 2-20
			Example 2-7. Configuration for Router R2 in Figure 2-20
			Verifying EIGRP Neighbors
			Example 2-8. Sample Output for the show ip eigrp neighbors Command
			Example 2-9. Sample Output for the show ip eigrp neighbors detail Command
			Verifying EIGRP Routes
			Example 2-10. show ip route eigrp Command Output
			Example 2-11. show ip route Command Output
			Verifying EIGRP Operations
			show ip protocols Example
			Example 2-12. show ip protocols Command Output
			show ip eigrp interfaces Example
			Example 2-13. show ip eigrp interfaces Command Output
			show ip eigrp topology Example
			Example 2-14. show ip eigrp topology Command Output
			show ip eigrp traffic Example
			Example 2-15. show ip eigrp traffic Command Output
			debug eigrp packets Examples
			Example 2-16. debug eigrp packets Command Output on R2 When a Neighbor’s Interface Comes Up
			Example 2-17. debug eigrp packets Command Output on R2 When a Neighbor’s Interface Is Shut Down
			debug ip eigrp Examples
			Example 2-18. debug ip eigrp Command Output on R2 When a Neighbor’s Interface Comes Up
			Example 2-19. debug ip eigrp Command Output on R2 When a Neighbor’s Interface Is Shut Down
		Using the passive-interface Command with EIGRP
			Table 2-4. passive-interface Command
			Example 2-20. Passive-Interface Configurations for Routers in Figure 2-20
			Example 2-21. Alternate Passive-Interface Configurations for Router R1 in Figure 2-20
			Example 2-22. show ip protocols Command Output on Router R1 in Figure 2-20
		Propagating an EIGRP Default Route
			Figure 2-21. EIGRP ip default-network Sample Network.
			Example 2-23. EIGRP Passes a Default Route Only if It Is Configured to Do So
		EIGRP Route Summarization
			Configuring Manual Route Summarization
			Table 2-5. ip summary-address eigrp Command Parameters
			Figure 2-22. Summarizing EIGRP Routes.
			Example 2-24. Turning Off EIGRP Autosummarization on Router A (and Router B) in Figure 2-22
			Example 2-25. Forcing Summarization on Router C in Figure 2-22
			Verifying Manual Route Summarization
			Example 2-26. Routing Table of Router C in Figure 2-22
	Configuring and Verifying EIGRP in an Enterprise WAN
		EIGRP over Frame Relay and on a Physical Interface
			Frame Relay Overview
			Figure 2-23. Frame Relay Topologies.
			EIGRP on a Physical Frame Relay Interface with Dynamic Mapping
			Figure 2-24. EIGRP on a Physical Frame Relay Interface.
			Example 2-27. Configuration of Router R1 in Figure 2-24 with Dynamic Mapping
			Example 2-28. Sample Output from Routers R1 and R3 in Figure 2-24
			EIGRP on a Frame Relay Physical Interface with Static Mapping
			Example 2-29. Configuration of Router R1 and R3 in Figure 2-24 with Static Mapping
			Table 2-6. frame-relay map Command Parameters
			Example 2-30. Output on Routers R1 and R3 in Figure 2-24 with Static Mapping
		EIGRP over Frame Relay Multipoint Subinterfaces
			Frame Relay Multipoint Subinterfaces
			EIGRP over Multipoint Subinterfaces
			Figure 2-25. EIGRP on a Multipoint Frame Relay Subinterface.
			Example 2-31. Configuration of Router R1 and R3 in Figure 2-25
			Example 2-32. Output on Routers R1 and R3 in Figure 2-25
			EIGRP Unicast Neighbors
			Example 2-33. Configuration of Router R1 in Figure 2-25 for Unicast Neighbor
			Example 2-34. Configuration of Router R2 in Figure 2-25 for Unicast Neighbor
			Example 2-35. Output on Routers R1 and R2 in Figure 2-25 for Unicast Neighbor
		EIGRP over Frame Relay Point-to-Point Subinterfaces
			Frame Relay Point-to-Point Subinterfaces
			EIGRP on Frame Relay Point-to-Point Subinterfaces
			Figure 2-26. EIGRP over a Point-to-Point Frame Relay Subinterface.
			Example 2-36. Configuration of Router R1 in Figure 2-26
			Example 2-37. Configuration of Router R3 in Figure 2-26
			Example 2-38. Output on Routers R1 and R3 in Figure 2-26
		EIGRP over MPLS
			MPLS
			MPLS Operation
			Figure 2-27. Labels Are Used to Assign a Path for a Packet Flow Through an MPLS Network.
			Service Provider Offerings
			Layer 2 and Layer 3 MPLS VPN Solutions
			Figure 2-28. Layer 2 and Layer 3 MPLS VPN Solutions.
			Layer 3 MPLS VPNs
			Layer 3 MPLS VPN Overview
			Figure 2-29. Layer 3 MPLS VPN.
			Customer Perspective of Layer 3 MPLS VPNs
			Figure 2-30. Customer Perspective of Layer 3 MPLS VPNs.
			EIGRP over Layer 3 MPLS VPN
			Figure 2-31. EIGRP over a Layer 3 MPLS VPN.
			Example 2-39. Configurations of Router R1 and R2 in Figure 2-31
			Example 2-40. Output on Router R1 and R2 in Figure 2-31
			Layer 2 MPLS VPNs
			Ethernet Port-to-Port Connectivity over a Layer 2 MPLS VPN
			Figure 2-32. Ethernet Port-to-Port Connectivity over a Layer 2 MPLS VPN.
			Figure 2-33. EIGRP over EoMPLS.
			Example 2-41. Configurations of Router R1 and R2 in Figure 2-33
			Example 2-42. Output on Router R1 and R2 in Figure 2-33
			Ethernet VLAN Connectivity
			Figure 2-34. EIGRP over EoMPLS.
		EIGRP Load Balancing
			EIGRP Equal-Cost Load Balancing
			Figure 2-35. EIGRP Equal-Cost Load Balancing.
			Table 2-7. Topology Table for 172.16.2.0/24 on Router R1 inFigure 2-35
			Example 2-43. Configuration of Router R1 in Figure 2-35
			EIGRP Unequal-Cost Load Balancing
			Figure 2-36. EIGRP Unequal-Cost Load Balancing.
			Table 2-8. New Topology Table for 172.16.2.0/24 on Router R1 inFigure 2-36
			Example 2-44. Additional EIGRP Configuration of Router R1 in Figure 2-36
		EIGRP Bandwidth Use Across WAN Links
			EIGRP Link Utilization
			Example 2-45. Adjusting the EIGRP Link Utilization
			Examples of EIGRP on WANs
			Figure 2-37. Frame Relay Multipoint in Which All VCs Share the Bandwidth Evenly.
			Example 2-46. Adjusting the bandwidth Command on an Interface on Router C in Figure 2-37
			Figure 2-38. Frame Relay Multipoint in Which VCs Have Different CIRs.
			Example 2-47. Adjusting the bandwidth Command on an Interface on Router C in Figure 2-38
			Figure 2-39. Frame Relay Multipoint and Point-to-Point.
			Example 2-48. Adjusting the Bandwidth for a Frame Relay Subinterface on Router C in Figure 2-39
			Figure 2-40. Frame Relay Hub-and-Spoke Topology.
			Example 2-49. EIGRP WAN Configuration: Point-to-Point Links on Routers C and G in Figure 2-40
	Configuring and Verifying EIGRP Authentication
		Router Authentication
		Simple Authentication Versus MD5 Authentication
		MD5 Authentication for EIGRP
			Planning for EIGRP Authentication
			Configuring EIGRP MD5 Authentication
			Table 2-9. accept-lifetime Command Parameters
			Table 2-10. send-lifetime Command Parameters
			MD5 Authentication Configuration Example
			Figure 2-41. Network for EIGRP Authentication Configuration Example.
			Example 2-50. Configuration of Router R1 in Figure 2-41
			Example 2-51. Configuration of Router R2 in Figure 2-41
		Verifying MD5 Authentication for EIGRP
			EIGRP MD5 Authentication Verification
			Example 2-52. Output on Router R1 in Figure 2-41
			Example 2-53. show key chain Command Output on Router R1 in Figure 2-41
			Troubleshooting MD5 Authentication
			Example of Successful MD5 Authentication
			Example 2-54. debug eigrp packets Command Output on Router R1 in Figure 2-41
			Example 2-55. debug eigrp packets Command Output on Router R2 in Figure 2-41
			Example of Troubleshooting MD5 Authentication Problems
			Example 2-56. Changes to the Configuration of Router R1 in Figure 2-41
			Example 2-57. Output on Router R2 in Figure 2-41
			Example 2-58. Output on Router R1 in Figure 2-41
		EIGRP Scalability in Large Networks
		EIGRP Queries and Stuck-in-Active
			Figure 2-42. EIGRP Query Process.
			Stuck-in-Active Connections in EIGRP
			Preventing SIA Connections
			Figure 2-43. Cisco IOS Active Process Enhancement.
		EIGRP Query Range
			Figure 2-44. Effect of the EIGRP Update and Query Process.
			Table 2-11. IP EIGRP Topology Table for 10.1.8.0/24 on Routers C, D, and E in Figure 2-44
			Table 2-12. IP EIGRP Topology Table for 10.1.8.0/24 on Router A in Figure 2-44
			Limiting the EIGRP Query Range
			Limiting Query Range with Summarization
			Figure 2-45. Nonscalable Internetwork.
			Figure 2-46. Scalable Internetwork.
			Figure 2-47. EIGRP Summarization Can Limit Query Range.
			Figure 2-48. Limiting Updates and Queries Using Summarization.
			Limiting Query Range Using a Stub
			Table 2-13. eigrp stub Command Parameters
			Example 2-59. eigrp stub Command to Advertise Connected and Summary Routes
			Example 2-60. eigrp stub Command to Receive Only Routes
			Figure 2-49. Limiting Updates and Queries Using the EIGRP Stub Feature.
			Figure 2-50. Network for eigrp stub Command Example.
			Example 2-61. Configuration for Router B in Figure 2-50
		Graceful Shutdown
			Figure 2-51. Graceful Shutdown Causes the Router to Say Goodbye.
	References
	Review Questions
Chapter 3. Configuring the Open Shortest Path First Protocol
	Understanding OSPF Terminology and Operation
		Link-State Routing Protocols
			Figure 3-1. Link-State Protocol Operation.
Link-State Routing Analogy
	OSPF Area Structure
		Figure 3-2. Issues with Maintaining a Large OSPF Network.
		Figure 3-3. The Solution: OSPF Hierarchical Routing.
		OSPF Areas
		Figure 3-4. Types of OSPF Routers.
		Area Terminology
	OSPF Adjacencies
		Figure 3-5. Hello Exchange on a Broadcast Network.
	OSPF Metric Calculation
		Figure 3-6. SPF Calculations.
	Link-State Data Structures
		Figure 3-7. LSA Operations.
	OSPF Packets
		Table 3-1. OSPF Packets
		Figure 3-8. OSPF Packet Header Format.
		Establishing OSPF Neighbor Adjacencies: Hello
			Figure 3-9. Establishing Neighbor Adjacencies.
		Exchange Process and OSPF Neighbor Adjacency States
			Figure 3-10. Establishing Bidirectional Communication.
			Figure 3-11. Discovering the Network Routes.
			Figure 3-12. Adding Link-State Entries.
		OSPF Neighbor States
		Maintaining Routing Information
			Figure 3-13. Maintaining Routing Information.
		OSPF Link-State Sequence Numbers
			Example 3-1. LSA Database Sequence Numbers and Maxage
		Verifying Packet Flow
			Table 3-2. debug ip ospf packet Command
			Example 3-2. Debug of a Single Packet
		Planning and Configuring OSPF
			Planning OSPF Routing Implementations
			Configuring Basic OSPF
			Table 3-3. router ospf Command
			Table 3-4. network Command Parameters with OSPF
			Table 3-5. ip ospf area Command
			Single-Area OSPF Configuration Example
			Figure 3-14. Configuring OSPF on Internal Routers of a Single Area.
			Multiarea OSPF Configuration Example
			Figure 3-15. Configuring OSPF for Multiple Areas.
		OSPF Router ID
OSPF Router ID Stability
	Loopback Interfaces
	OSPF router-id Command
	Example 3-3. router-id Command
	Verifying the OSPF Router ID
	Example 3-4. show ip ospf Command from Router B in Figure 3-15
	Verifying OSPF Operations
		The show ip ospf interface Command
		Table 3-6. show ip ospf interface Command
		Example 3-5. show ip ospf interface Command on Router A in Figure 3-15
		The show ip ospf neighbor Command
		Table 3-7. show ip ospf neighbor Command
		Example 3-6. show ip ospf neighbor Command from Router B in Figure 3-15
		Example 3-7. show ip ospf neighbor detail Command from Router B in Figure 3-15
		The show ip route ospf Command
		Example 3-8. show ip route ospf Command
		The show ip protocols Command
		Example 3-9. show ip protocols Command
		The debug ip ospf events Command
		Example 3-10. debug ip ospf events Command
	Understanding OSPF Network Types
		Types of OSPF Networks
		Electing a DR and BDR and Setting Priority
			Figure 3-16. Electing the DR and BDR.
			Example 3-11. ip ospf priority Command
		Adjacency Behavior for a Point-to-Point Link
		Adjacency Behavior for a Broadcast Network
		Adjacency Behavior over a Layer 2 MPLS VPN
			Figure 3-17. EoMPLS Provides Layer 2 MPLS VPN Connectivity.
		Adjacency Behavior over a Layer 3 MPLS VPN
			Figure 3-18. OSPF over Layer 3 MPLS VPN Connectivity.
		Adjacency Behavior for an NBMA Network
			DR Election in an NBMA Topology
			OSPF over Frame Relay Topology Options
			Figure 3-19. Frame Relay Topologies.
			OSPF over NBMA Topology Modes of Operation
			Selecting the OSPF Network Type for NBMA Networks
			Table 3-8. ip ospf network Command
			OSPF Configuration in Cisco Broadcast Mode
			Example 3-12. Frame Relay Router in OSPF Broadcast Mode with Full-Mesh Topology
			OSPF Nonbroadcast Mode Configuration
			Table 3-9. neighbor Command
			Figure 3-20. Using the neighbor Command in Nonbroadcast Mode.
			Example 3-13. show ip ospf neighbor Output for Router A in Figure 3-20
			OSPF Configuration in Point-to-Multipoint Mode
			Figure 3-21. Using OSPF Point-to-Multipoint Mode.
			Example 3-14. Point-to-Multipoint Configuration for Routers A and C in Figure 3-21
			Example 3-15. show ip ospf interface Output from Router A in Figure 3-21
			OSPF Configuration in Cisco Point-to-Multipoint Nonbroadcast Mode
			Using Subinterfaces in OSPF over Frame Relay Configuration
			Table 3-10. interface serial Command Parameters
			OSPF over Point-to-Point Subinterfaces
			Figure 3-22. OSPF Point-to-Point Subinterface Example.
			Example 3-16. Point-to-Point Subinterface Configuration for Routers A and B in Figure 3-22
			OSPF over Multipoint Subinterfaces
			Figure 3-23. Multipoint Subinterface Example.
			Example 3-17. Point-to-Point Subinterface Configuration for Routers A, B, and C in Figure 3-23
			OSPF Configuration in Cisco Point-to-Point Mode
			Figure 3-24. Network for Point-to-Point Configuration Example.
			Example 3-18. Point-to-Point Configuration for Routers A and B in Figure 3-24
			OSPF over NBMA Modes of Operation Summary
			Table 3-11. OSPF Mode Summary
		Displaying OSPF Adjacency Activity
			Example 3-19. debug ip ospf adj Command Output for a Point-to-Point Serial Link
			Example 3-20. debug ip ospf adj Command Output for a Fast Ethernet Link
	Understanding OSPF LSAs
		Table 3-12. Summary of OSPF LSA Types
		LSA Type 1: Router LSA
			Figure 3-25. LSA Type 1: Router LSA.
			Table 3-13. LSA Type 1 (Router LSA) Link Types and Link ID
		LSA Type 2: Network LSA
			Figure 3-26. LSA Type 2: Network LSA.
		LSA Type 3: Summary LSA
			Figure 3-27. LSA Type 3: Summary LSA.
		LSA Type 4: Summary LSA
			Figure 3-28. LSA Type 4: Summary LSA.
		LSA Type 5: External LSA
			Figure 3-29. LSA Type 5: External LSA.
		Example OSPF LSAs in a Network
			Figure 3-30. Example of a Variety of LSAs Within a Network.
	Interpreting the OSPF LSDB and Routing Table
		OSPF LSDB
			Figure 3-31. Tuning OSPF.
			Example 3-21. show ip ospf database Command
		OSPF Routing Table and Types of Routes
			Example 3-22. show ip route Command Output with Internal and External OSPF Routes
			Table 3-14. Types of OSPF Routes
		Calculating the Costs of E1 and E2 Routes
			Figure 3-32. Calculating the Costs of E1 and E2 Routes.
			Figure 3-33. Network Used for Example 3-22.
		Configuring OSPF LSDB Overload Protection
			Table 3-15. max-lsa Command Parameters
	Configuring and Verifying Advanced OSPF Features
		Using the passive-interface Command with OSPF
			Table 3-16. passive-interface Command
			Figure 3-34. The passive-interface Command Causes OSPF to Neither Send nor Receive.
			Example 3-23. Configurations of Router R1 and R2 in Figure 3-34
		Propagating an OSPF Default Route
			Figure 3-35. Default Routes in OSPF.
			Table 3-17. default-information originate Command Parameters
			Example 3-24. Default Route in the OSPF Database
default-information originate Command Actual Behavior
	Figure 3-36. Default Route Example.
	Configuring OSPF Route Summarization
		Figure 3-37. Benefits of Route Summarization.
		Figure 3-38. Using Route Summarization.
		Configuring Inter-area OSPF Route Summarization on an ABR
		Table 3-18. area range Command Parameters
		Interarea Route Summarization Configuration Example on an ABR
		Figure 3-39. Route Summarization Example at the ABR.
		Example 3-25. Enabling OSPF Routing on R1 and R2 in Figure 3-39
		Configuring External OSPF Route Summarization on an ASBR
		Table 3-19. summary-address Command Parameters
		External Route Summarization Configuration Example on an ASBR
		Figure 3-40. Route Summarization Example at the ASBR.
	OSPF Virtual Links
		Figure 3-41. Virtual Links Are Used to Connect a Discontiguous Area 0.
		Figure 3-42. Virtual Links Are Used to Connect an Area to the Backbone Area.
		Configuring OSPF Virtual Links
		Table 3-20. area area-id virtual-link Command Parameters
		Example 3-26. Finding the OSPF Router ID for Use on a Virtual Link
		Figure 3-43. OSPF Virtual Link Configuration: Split Area 0.
		Verifying OSPF Virtual Link Operation
		Example 3-27. show ip ospf virtual-links Command Output from Router A in Figure 3-43
		Table 3-21. show ip ospf virtual-links Command Fields
		Example 3-28. show ip ospf neighbor Command Output from Router A in Figure 3-43
		Example 3-29. show ip ospf database Command Output from Router A in Figure 3-43
		OSPF LSDB for Virtual Links
		Figure 3-44. OSPF Virtual Link Across Area 1.
		Example 3-30. Configurations for Routers R1 and R3 in Figure 3-44
		Example 3-31. show ip ospf database Command Output on Router R1 in Figure 3-44
		Example 3-32. show ip ospf database summary Command Output on Router R3 in Figure 3-44
	Changing the Cost Metric
	Configuring OSPF Special Area Types
		Figure 3-45. Some Types of OSPF Areas.
		Table 3-22. OSPF Area Types
		Configuring Stub Areas
		Figure 3-46. Using Stub Areas.
		Table 3-23. area default-cost Command Parameters
		Figure 3-47. OSPF Stub Area Example.
		Example 3-33. OSPF Stub Area Configuration for Routers R3 and R4 in Figure 3-47
		Configuring Totally Stubby Areas
		Figure 3-48. Using Totally Stubby Areas.
		Table 3-24. area area-id stub no-summary Command Parameters
		Figure 3-49. Totally Stubby Example.
		Example 3-34. Totally Stubby Configuration for Routers in Figure 3-49
		Interpreting Routing Tables in Different Types of OSPF Areas
		Example 3-35. Routing Table in a Standard Area
		Example 3-36. Routing Table in a Stub Area
		Example 3-37. Routing Table in a Stub Area with Summarization
		Example 3-38. Routing Table in a Totally Stubby Area
		Configuring NSSAs
		Figure 3-50. NSSA.
		Table 3-25. area area-id nssa Command Parameters
		Figure 3-51. NSSA Example.
		Example 3-39. OSPF NSSA Configuration for Routers in Figure 3-51
		OSPF NSSA LSDB
		Figure 3-52. OSPF NSSA Example Network.
		Example 3-40. OSPF NSSA Configuration for Routers in Figure 3-52
		Example 3-41. show ip ospf database Output on Router R2 in Figure 3-52
		Configuring Totally Stubby NSSAs
		Figure 3-53. NSSA Totally Stubby.
		Example 3-42. NSSA Totally Stubby Configuration for Routers in Figure 3-53
		Example OSPF Area Types in a Network
		Figure 3-54. Example of Different OSPF Area Types.
		Verifying All Area Types
		Table 3-26. show Commands for All Area Types
How Does OSPF Generate Default Routes?
	Planning for OSPF Authentication
	Configuring, Verifying, and Troubleshooting OSPF Simple Password Authentication
		Configuring OSPF Simple Password Authentication
		Table 3-27. ip ospf authentication Command Parameters
		Table 3-28. area authentication Command Parameters
		Simple Password Authentication Example
		Figure 3-55. Simple Password Authentication Example.
		Example 3-43. Configuration of Routers R1 and R2 in Figure 3-55
		Verifying Simple Password Authentication
		Example 3-44. Verifying Simple Password Authentication on R1 in Figure 3-55
		Troubleshooting Simple Password Authentication
		Successful Simple Password Authentication Example
		Example 3-45. Successful: Simple Password Authentication on R1 in Figure 3-55
		Example 3-46. R1 and R2 in Figure 3-55 Have Formed an Adjacency
		Troubleshooting Simple Password Authentication Problems Example
		Example 3-47. Simple Password Authentication on R1 and no Authentication on R2 in Figure 3-55
		Example 3-48. Simple Password Authentication on R1 and R2 in Figure 3-55, but with Different Passwords
		Configuring OSPF Simple Password Authentication for Virtual Links
		Figure 3-56. OSPF Simple Password Authentication over a Virtual Link.
	Configuring, Verifying, and Troubleshooting MD5 Authentication
		Configuring OSPF MD5 Authentication
		Table 3-29. ip ospf message-digest-key Command Parameters
		MD5 Authentication Example
		Figure 3-57. MD5 Authentication Example.
		Example 3-49. Configuration of Routers R1 and R2 in Figure 3-57
		Verifying MD5 Authentication
		Example 3-50. Verifying MD5 Authentication on R1 in Figure 3-57
		Troubleshooting MD5 Authentication
		Successful MD5 Authentication Example
		Example 3-51. Successful MD5 Authentication on R1 in Figure 3-57
		Example 3-52. R1 and R2 in Figure 3-57 Have Formed an Adjacency
		Troubleshooting MD5 Authentication Problems Example
		Example 3-53. MD5 Authentication on R1 and R2 in Figure 3-57 but with Different Key IDs
	ummary
	References
	Review Questions
Chapter 4. Manipulating Routing Updates
	Assessing Network Routing Performance Issues
		Routing Protocol Performance Issues
			Figure 4-1. Routers Can Run Multiple Routing Protocols.
		Routing Protocol Performance Solutions
			Figure 4-2. Incoming Route Filter Processing.
	Using Multiple IP Routing Protocols on a Network
		Understanding a Network with Complex Routing
		Understanding Route Redistribution
			Redistribution Overview
			Figure 4-3. Network Migration Might Require Readdressing and Other Changes.
			Redistributed Routes
			Figure 4-4. Redistribution Between OSPF and EIGRP.
			Redistribution Implementation Considerations
			Selecting the Best Route in a Redistribution Environment
			Administrative Distance
			Table 4-1. Default administrative distances of Routing Protocols
			Seed Metrics
			Default Seed Metrics
			Table 4-2. Default Seed Metrics
			Figure 4-5. Redistribution Between OSPF and RIP.
		Redistribution Techniques
			One-Point Redistribution
			Figure 4-6. One-Point One-Way Redistribution Issue.
			Multipoint Redistribution
			Figure 4-7. Multipoint One-Way Redistribution.
			Figure 4-8. One-Way Multipoint Redistribution Issue.
			Figure 4-9. Multipoint Two-Way Redistribution.
			Figure 4-10. Two-Way Multipoint Redistribution Issue.
			Preventing Routing Loops in a Redistribution Environment
			Figure 4-11. Redistribution Techniques.
	Implementing Route Redistribution
		Example 4-1. Redistribution Supports All Protocols
		Configuring Route Redistribution
			Redistributing into RIP
			Table 4-3. redistribute Command for RIP
			Example 4-2. Configuring Redistribution into RIP
			Figure 4-12. Routes Redistributed into RIP.
			Redistributing into OSPF
			Table 4-4. redistribute Command for OSPF
			Example 4-3. Configuring Redistribution into OSPF
			Figure 4-13. Routes Redistributed into OSPF.
			Redistributing into EIGRP
			Table 4-5. redistribute Command for EIGRP
			Example 4-4. Configuring Redistribution into EIGRP
			Table 4-6. metric-value Parameters for EIGRP
			Figure 4-14. Routes Redistributed into EIGRP.
		The default-metric Command
		The passive-interface Command
			Table 4-7. passive-interface Command
			Figure 4-15. passive-interface Command Restricts Routing Traffic on an Interface.
		Route Redistribution Example
			Figure 4-16. Sample Network Before Redistribution.
			Figure 4-17. Routing Tables Before Redistribution.
			Figure 4-18. Redistribution Configured on Router B.
			Figure 4-19. Routing Tables After Redistribution.
			Figure 4-20. Routing Tables After Summarization.
		Using Administrative Distance to Influence the Route-Selection Process
			Selecting Routes with Administrative Distance
			Figure 4-21. Path Selected Through a Network Depends on the Routing Protocols Configured.
			Modifying Administrative Distance
			Table 4-8. distance Command
			Table 4-9. distance eigrp Command
			Example 4-5. Modifying Administrative Distance for EIGRP Example
			Table 4-10. distance ospf Command
			Example 4-6. Modifying Administrative Distance for OSPF Example
			Table 4-11. distance bgp Command
			Redistribution Using Administrative Distance Example
			Figure 4-22. Sample Redistribution Network Topology.
			Example 4-7. Configuration of Redistribution on Router R1 in Figure 4-22
			Example 4-8. Configuration of Redistribution on Router R2 in Figure 4-22
			Example 4-9. Routing Table on Router R2 in Figure 4-22 with Redistribution Configured
			Table 4-12. distance Command Parameters Used in Example 4-10 and Example 4-11
			Example 4-10. Configuration to Change the Administrative Distance on Router R1 in Figure 4-22
			Example 4-11. Configuration to Change the Administrative Distance on Router R2 in Figure 4-22
			Table 4-13. access-list Command Parameters Used in Example 4-10 and Example 4-11
			Example 4-12. Routing Table on Router R2 in Figure 4-22 with the Administrative Distance Changed
		Verifying Redistribution Operation
	Controlling Routing Update Traffic
		Static and Default Routes
ip default-network and Other IP Commands
	Figure 4-23. Using the ip default-network Command.
	Example 4-13. Configuration on Router R2 in Figure 4-23
	Example 4-14. Routing Table on R3 in Figure 4-23
	Using Route Maps
		Route Map Applications
		Understanding Route Maps
		Table 4-14. route-map Command
		Example 4-15. Demonstration of the route-map Command
		Configuring Route Maps to Control Routing Updates
		Table 4-15. match Commands
		Table 4-16. set Commands
		Configuring Route Maps for Policy Based Routing
		Example 4-16. Using a Route Map for Policy-Based Routing
	Configuring Route Redistribution Using Route Maps
		Using Route Maps with Redistribution
		Example 4-17. Redistributing RIPv1 into OSPF Using a Route Map
		Using Route Maps to Avoid Route Feedback
		Figure 4-24. Route Maps Can Help Avoid Route Feedback Loops.
		Example 4-18. Partial Configuration on Routers A and B in Figure 4-24
		Using Route Maps with Tags
		Example 4-19. Using Route Maps with Tags
		Using Route Maps with Redistribution and Tags
		Figure 4-25. Example Network for Route Maps with Route Tagging.
		Example 4-20. Partial Configuration of Router R1 in Figure 4-25
		Example 4-21. Output on Routers R1 and R2 in Figure 4-25
		Example 4-22. Output from Router R3 in Figure 4-25
	Using Distribute Lists
		Figure 4-26. Route Filters Using a Distribute List.
		Configuring Distribute Lists to Control Routing Updates
		Planning a Distribute List Deployment
		Configuring a Distribute List
		Table 4-17. distribute-list out Command
		Table 4-18. distribute-list in Command
		IP Route Filtering with Distribute List Configuration Example
		Figure 4-27. Network 10.0.0.0 Needs to Be Hidden from Network 192.168.5.0.
		Example 4-23. Filtering Out Network 10.0.0.0 on Router B in Figure 4-27
		Controlling Redistribution with Distribute Lists
		Figure 4-28. Router B Controls Redistribution.
		Example 4-24. Configuration of Router B in Figure 4-28
	Using Prefix Lists
		Prefix List Characteristics
		Filtering with Prefix Lists
		Configuring Prefix Lists
		Table 4-19. ip prefix-list Command Description
ip prefix-list Command Options
	Figure 4-29. Network Used in Prefix List Option Testing.
	Prefix List Sequence Numbers
	Prefix List Examples
	Figure 4-30. Controlling Redistribution with Prefix Lists.
	Example 4-25. Configuration of Router R2 in Figure 4-30
	Verifying Prefix Lists
	Table 4-20. Commands Used to Verify Prefix Lists
	Example 4-26. show ip prefix-list detail Command Output
	Using Multiple Methods to Control Routing Updates
		Figure 4-31. Using Multiple Methods to Control Routing Updates.
	Comprehensive Example of Controlling Routing Updates
		Figure 4-32. Network for Comprehensive Example.
		Example 4-27. Router R1’s Route to Router R3’s Loopback Interface
		Example 4-28. trace Command Output on Router R1
		Example 4-29. show ip protocols Command Output on Router R1
		Example 4-30. show ip eigrp topology Command Output on Router R1
		Example 4-31. show ip route Command Output on Router R2
		Example 4-32. Prefix List Configuration on Router R1
		Example 4-33. Route Map Configuration on Router R1
		Example 4-34. Redistribution Configuration on Router R1
		Example 4-35. Configuration on Router R2
		Example 4-36. show ip route Command Output on Router R1
		Example 4-37. trace Command Output on Router R1
		Example 4-38. show ip route Command Output on Router R1
		Example 4-39. show ip eigrp topology Command Output on Router R1
		Example 4-40. show ip ospf database external Command Output on Router R1
		Example 4-41. show ip prefix-list detail Command Output on Router R1
		Example 4-42. Resetting the OSPF Process on Router R1
		Example 4-43. Alternative Configuration for R1 and R2
		Example 4-44. R2’s Routing Table
		Example 4-45. R2 Reaches R3’s External Routes Via R1
		Figure 4-33. R2 Chooses the Route with the Lowest Administrative Distance.
		Example 4-46. R1’s and R2’s Routing Table Entry for R3’s Network
		Example 4-47. Changing the Administrative Distance of External OSPF Routes on R2
		Example 4-48. R2’s Routing Table Entry After the Administrative Distance Changed
		Example 4-49. R2 Now Goes Directly to R3
		Figure 4-34. R2 Chooses the Route with the Lowest Administrative Distance.
		Example 4-50. Configuration on R1 to Change the Administrative Distance
	Summary
	References
	Review Questions
Chapter 5. Implementing Path Control
	Understanding Path Control
		Assessing Path Control Network Performance
		Path Control Tools
			Figure 5-1. Advertising Summaries and More-Specific Routes Affects Traffic Flow.
			Table 5-1. Routing Protocol Characteristics
			Figure 5-2. Path Control Requires an Integrated Strategy.
	Implementing Path Control Using Offset Lists
		Using Offset Lists to Control Path Selection
		Configuring Path Control Using Offset Lists
			Table 5-2. offset-list Command
			Figure 5-3. An Offset List Can Be Used to Prefer a Faster Path.
			Example 5-1. Offset List Configuration for Router R2 in Figure 5-3
		Verifying Path Control Using Offset Lists
			Figure 5-4. A Branch Office Scenario.
		Using Cisco IOS IP SLAs to Control Path Selection
			Figure 5-5. Cisco IOS IP SLAs Measure Network Performance.
		Cisco IOS IP SLAs Operation
			Figure 5-6. IP SLAs Take Measurements Between a Cisco Device and Another Cisco Device or a Host.
			Cisco IOS IP SLAs Sources and Responders
			Cisco IOS IP SLAs Operations
			Cisco IOS IP SLAs Operation with Responders
			Figure 5-7. IP SLAs Operation with a Responder.
			Cisco IOS IP SLAs with Responder Time Stamps
			Figure 5-8. Time Stamps in an IP SLAs Operation with a Responder.
		Configuring Path Control Using IOS IP SLAs
			Configuring Cisco IOS IP SLAs Operations
			Table 5-3. icmp-echo and type echo protocol ipIcmpEcho Commands
			Table 5-4. ip sla schedule and ip sla monitor schedule Commands
			Configuring Cisco IOS IP SLAs Tracking Objects
			Table 5-5. track ip sla and track rtr Commands
			Table 5-6. delay Commands
			Configuring the Action Associated with the Tracking Object
			Table 5-7. ip route Command
		Verifying Path Control Using IOS IP SLAs
			Table 5-8. show ip sla statistics and show ip sla monitor statistics Commands
		Examples of Path Control Using Cisco IOS IP SLAs
			Tracking Reachability to Two ISPs
			Figure 5-9. Tracking Reachability to Two ISPs Example Network.
			Example 5-2. Cisco IOS IP SLAs Configuration of Router R1 in Figure 5-9
			Tracking DNS Server Reachability in the Two ISPs
			Figure 5-10. Tracking Reachability to DNS Servers in the Two ISPs Example Network.
			Example 5-3. Results of Reachability Tests to DNS Servers from R3
			Example 5-4. Configuration of Router R3 in Figure 5-10
			Example 5-5. show ip sla monitor configuration Output on R3
			Example 5-6. show ip sla monitor statistics Output on R3
			Example 5-7. Tracking Object Configuration of Router R3 in Figure 5-10
			Example 5-8. Routing Table on Router R3
			Example 5-9. debug ip routing Output on R3
			Example 5-10. show ip sla statistics Output on R3
			Example 5-11. show ip route static Output on R3
			Example 5-12. debug ip routing Output on R3
			Example 5-13. show ip route static Output on R3
	Implementing Path Control Using Policy-Based Routing
		Using PBR to Control Path Selection
		Configuring PBR
			PBR match Commands
			Table 5-9. match ip address Command
			Table 5-10. match length Command
			PBR set Commands
			set ip next-hop Command
			Table 5-11. set ip next-hop Command
			set interface Command
			Table 5-12. set interface Command
			set ip default next-hop Command
			Table 5-13. set ip default next-hop Command
			set default interface Command
			Table 5-14. set default interface Command
			set ip tos Command
			Table 5-15. set ip tos Command
			set ip precedence Command
			Table 5-16. set ip precedence Command
			Configuring PBR on an Interface
			Table 5-17. ip policy route-map Command
			Table 5-18. ip local policy route-map Command
		Verifying PBR
		PBR Examples
			Using PBR When Connecting Two ISPs
			Figure 5-11. Router A Is Connected to Two ISPs.
			Example 5-14. Configuration of Router A in Figure 5-11
			Example 5-15. show ip policy on Router A in Figure 5-11
			Example 5-16. show route-map on Router A in Figure 5-11
			Example 5-17. debug ip policy on Router A in Figure 5-11
			Using PBR Based on Source Address
			Figure 5-12. Router A Has a Policy That Packets from 192.168.2.1 Go to Router C’s Interface S0/0/1.
			Example 5-18. Configuration of Router A in Figure 5-12
			Example 5-19. show ip policy Output on Router A in Figure 5-12
			Example 5-20. show route-map Output on Router A in Figure 5-12
			Example 5-21. Example of debug ip policy on Router A in Figure 5-12
			Alternative Solution IP SLAs Configuration Example Using PBR
			Example 5-22. Partial Alternative Configuration for Router R3 in Figure 5-10
			Table 5-19. set ip next-hop verify-availability Command
	Advanced Path Control Tools
		Cisco IOS Optimized Edge Routing
			Figure 5-13. Cisco IOS OER Operations.
		Virtualization
			Figure 5-14. VRF Creates Separate Virtual Routing Tables in One Physical Router.
			Figure 5-15. Virtualization Technologies Used for Path Control.
		Cisco Wide Area Application Services
			Figure 5-16. WCCP Used for WAN Optimization.
	References
	Review Questions
Chapter 6. Implementing a Border Gateway Protocol Solution for ISP Connectivity
	BGP Terminology, Concepts, and Operation
		Autonomous Systems
			Figure 6-1. IGPs Operate Within an Autonomous System, and EGPs Operate Between Autonomous Systems.
		BGP Use Between Autonomous Systems
			Figure 6-2. BGP-4 Is Used Between Autonomous Systems on the Internet.
			Table 6-1. RFCs Relating to BGP-4
		Comparison with Other Scalable Routing Protocols
			Table 6-2. Comparison of Scalable Routing Protocols
		Connecting Enterprise Networks to an ISP
			Public IP Address Space
			Connection Link Type and Routing
			Using Layer 2 Circuit Emulation
			Figure 6-3. Layer 2 MPLS VPN Connection.
			Using Layer 3 MPLS VPNs
			Figure 6-4. Layer 3 MPLS VPN Connection.
			Using Static Routes
			Figure 6-5. Using Static Routes for ISP Connectivity.
			Using BGP
			Figure 6-6. Using BGP for ISP Connectivity.
			Connection Redundancy
			Single-Homed ISP Connectivity
			Figure 6-7. Single-Homed ISP Connectivity.
			Dual-Homed ISP Connectivity
			Figure 6-8. Dual-Homed ISP Connectivity.
			Multihomed ISP Connectivity
			Figure 6-9. Multihomed ISP Connectivity.
			Dual-Multihomed ISP Connectivity
			Figure 6-10. Multihomed ISP Connectivity.
		Using BGP in an Enterprise Network
			Figure 6-11. Using BGP to Connect to the Internet.
		BGP Multihoming Options
			Multihoming with Default Routes from All Providers
			Figure 6-12. Default Routes from All ISPs.
			Multihoming with Default Routes and Partial Table from All Providers
			Figure 6-13. Default Routes and Partial Table from All ISPs.
			Multihoming with Full Routes from All Providers
			Figure 6-14. Full Routes from All ISPs.
		BGP Path Vector Characteristics
			Figure 6-15. BGP Uses Path Vector Routing.
			Figure 6-16. BGP Supports Routing Policies.
		When to Use BGP
		When Not to Use BGP
		BGP Characteristics
			Figure 6-17. BGP Is Carried Inside TCP Segments, Which Are Inside IP Packets.
		BGP Neighbor Relationships
			Figure 6-18. Routers That Have Formed a BGP Connection Are BGP Neighbors or Peers.
			External BGP Neighbors
			Figure 6-19. EBGP Neighbors Belong to Different Autonomous Systems.
			Internal BGP Neighbors
			Figure 6-20. IBGP Neighbors Are in the Same Autonomous System.
		IBGP on All Routers in a Transit Path
			IBGP in a Transit Autonomous System
			Figure 6-21. BGP in a Transit Autonomous System.
			IBGP in a Nontransit Autonomous System
			BGP Partial-Mesh and Full-Mesh Examples
			Figure 6-22. Partial-Mesh Versus Full-Mesh IBGP.
			TCP and Full Mesh
			Routing Issues If BGP Not on in All Routers in a Transit Path
			Figure 6-23. Routing Might Not Work If BGP Is Not Run on All Routers in a Transit Path.
		BGP Synchronization
			Figure 6-24. BGP Synchronization Example.
		BGP Tables
			Figure 6-25. Router Running BGP Keeps a BGP Table, Separate from the IP Routing Table.
		BGP Message Types
			Open and Keepalive Messages
			Update Messages
			Notification Messages
BGP Neighbor States
	BGP Attributes
BGP Path Attribute Format
	Well-Known Attributes
	Optional Attributes
	Defined BGP Attributes
BGP Attribute Type Codes
	The AS-Path Attribute
	Figure 6-26. Router C Prepends Its Own Autonomous System Number as It Passes Routes from Router A to Router B.
	The Next-Hop Attribute
	Figure 6-27. BGP Next-Hop Attribute.
	Figure 6-28. Multiaccess Network: Router A Has 10.10.10.2 as the Next-Hop Attribute to Reach 172.30.0.0.
	Figure 6-29. NBMA Network: Router A Has 10.10.10.2 as the Next-Hop Attribute to Reach 172.30.0.0, but It Might Be Unreachable.
	The Origin Attribute
	The Local Preference Attribute
	Figure 6-30. Local Preference Attribute: Router A Is the Preferred Router to Get to 172.16.0.0.
	The Community Attribute
	The MED Attribute
	Figure 6-31. MED Attribute: Router B Is the Best Next Hop to Get to Autonomous System 65500.
	The Weight Attribute (Cisco Only)
	Figure 6-32. Weight Attribute: Router A Uses Router B as the Next Hop to Reach 172.20.0.0.
	The Route-Selection Decision Process
		BGP Route-Selection Process
Multiple Path Selection
	Figure 6-33. BGP Maximum Paths Example.
	Example 6-1. Output from Testing of the maximum-paths Command for BGP
	The Path-Selection Decision Process with a Multihomed Connection
	Configuring BGP
		Planning BGP Implementations
		Peer Groups
			Table 6-3. neighbor peer-group Command Description
		Entering BGP Configuration Mode
		Defining BGP Neighbors and Activating BGP Sessions
			Table 6-4. neighbor remote-as Command Description
			Figure 6-34. BGP Network with IBGP and EBGP Neighbor Relationships.
			Example 6-2. Configuration of Router A in Figure 6-34
			Example 6-3. Configuration of Router B in Figure 6-34
			Example 6-4. Configuration of Router C in Figure 6-34
		Shutting Down a BGP Neighbor
		Defining the Source IP Address
			Figure 6-35. BGP Source Address Must Match the Address in the neighbor Command.
			Figure 6-36. BGP Sample Network Using Loopback Addresses.
			Example 6-5. Configuration of Router B in Figure 6-36
			Example 6-6. Configuration of Router C in Figure 6-36
		EBGP Multihop
			Figure 6-37. EBGP Multihop Is Required If Loopback Is Used Between External Neighbors.
			Example 6-7. Configuration of Router A in Figure 6-37
			Example 6-8. Configuration of Router B in Figure 6-37
		Changing the Next-Hop Attribute
			Table 6-5. neighbor next-hop-self Command Description
			Figure 6-38. neighbor next-hop-self Command Allows Router B to Advertise Itself as the Next Hop.
			Example 6-9. Configuration of Router B in Figure 6-38
		Defining the Networks That BGP Advertises
			Table 6-6. network Command Description
		BGP Neighbor Authentication
			Table 6-7. neighbor password Command Description
			Figure 6-39. BGP Neighbor Authentication.
			Example 6-10. Configuration of Router A in Figure 6-39
			Example 6-11. Configuration of Router B in Figure 6-39
		Configuring BGP Synchronization
		Resetting BGP Sessions
			Hard Reset of BGP Sessions
			Soft Reset of BGP Sessions Outbound
			Soft Reset of BGP Sessions Inbound
			Inbound Soft Reset Using Stored Information
			Route Refresh: Dynamic Inbound Soft Reset
			Figure 6-40. Monitoring Soft Reconfiguration.
		BGP Configuration Examples
			Basic BGP Examples
			Figure 6-41. Sample BGP Network.
			Example 6-12. Configuration of Router A in Figure 6-41
			Example 6-13. Configuration of Router B in Figure 6-41
			Figure 6-42. Example BGP Network.
			Example 6-14. Configuration of Router R2 in Figure 6-42
			Peer Group Example
			Figure 6-43. Peer Groups Simplify Configuration.
			Example 6-15. Configuration of Router C in Figure 6-43 Without Using a Peer Group
			Example 6-16. Configuration of Router C in Figure 6-43 Using a Peer Group
			IBGP and EBGP Examples
			Figure 6-44. IBGP and EBGP Example.
			Example 6-17. Configuration of Router B in Figure 6-44
			Figure 6-45. CPE and PE BGP Connection Example.
			Example 6-18. Configuration of Router R3 in Figure 6-45
	Verifying and Troubleshooting BGP
		show ip bgp Command Output Example
			Example 6-19. show ip bgp Command Output
		show ip bgp rib-failure Command Output Example
			Example 6-20. show ip bgp rib-failure Command Output
		show ip bgp summary Command Output Example
			Example 6-21. show ip bgp summary Command Output
		debug ip bgp updates Command Output Example
			Example 6-22. debug ip bgp updates Command Output
		Understanding and Troubleshooting BGP Neighbor States
			Idle State Troubleshooting
			Active State Troubleshooting
			Established State
			Example 6-23. show ip bgp neighbors Command Output
	Basic BGP Path Manipulation Using Route Maps
		BGP Path Manipulation
			Figure 6-46. BGP Network Without Policy Manipulation.
		Changing the Weight
			Changing the Weight for All Updates from a Neighbor
			Table 6-8. neighbor weight Command Description
			Changing the Weight Using Route Maps
			Figure 6-47. Setting Weight with Route Map Example.
			Example 6-24. Configuration of Router R1 in Figure 6-47
			Table 6-9. ip as-path access-list Command Description
		Setting Local Preference
			Changing Local Preference for All Routes
			Figure 6-48. Setting a Default Local Preference for All Routes.
			Example 6-25. Configuration for Router A in Figure 6-48
			Example 6-26. Configuration for Router B in Figure 6-48
			Local Preference Example
			Figure 6-49. Network for Local Preference Example.
			Example 6-27. BGP Table for Router C in Figure 6-49 Without Path Manipulation
			Changing Local Preference Using Route Maps
			Example 6-28. BGP Configuration for Router A in Figure 6-49 with a Route Map
			Example 6-29. BGP Table for Router C in Figure 6-49 with a Route Map for Local Preference
		Setting the AS-Path
			Figure 6-50. AS-Path Prepending Example.
			Example 6-30. Configuration of Router R1 in Figure 6-50
			Table 6-10. set as-path Command Description
		Setting the MED
			Changing the MED for All Routes
			Figure 6-51. Changing the Default MED for All Routes.
			Example 6-31. BGP Configuration for Router A in Figure 6-51
			Example 6-32. BGP Configuration for Router B in Figure 6-51
			Changing the MED Using Route Maps
			Figure 6-52. Network for MED Examples.
			Example 6-33. BGP Configuration for Router A in Figure 6-52 with a Route Map
			Example 6-34. BGP Configuration for Router B in Figure 6-52 with a Route Map
			Example 6-35. BGP Table for Router Z in Figure 6-52 with a Route Map
		Implementing BGP in an Enterprise Network
			Figure 6-53. BGP in an Enterprise.
	Filtering BGP Routing Updates
		Figure 6-54. Filtering BGP Routing Updates.
BGP Filter Lists
	Table 6-11. neighbor filter-list Command Description
	BGP Filtering Using Prefix Lists
		Planning BGP Filtering Using Prefix Lists
		BGP Filtering Using Prefix Lists Example
		Table 6-12. neighbor prefix-list Command Description
		Figure 6-55. Filtering BGP with Prefix Lists Example.
		Example 6-36. Configuration for Router R2 in Figure 6-55
		Example 6-37. show ip prefix-list detail Command Output on Router R2 in Figure 6-55
	BGP Filtering Using Route Maps
		Planning BGP Filtering Using Route Maps
		BGP Filtering with Route Maps Example
		Figure 6-56. Filtering BGP with Route Maps Example.
		Example 6-38. Configuration of Router A in Figure 6-56
	Summary
	References
	Review Questions
Chapter 7. Implementing Routing Facilities for Branch Offices and Mobile Workers
	Planning the Branch Office Implementation
		Branch Office Design
			Figure 7-1. Branch Office Design Considerations.
			Figure 7-2. Profiling Locations Based on Size, WAN, and Functional and Service Requirements.
			Upgrade Scenario
			Figure 7-3. Original Topology of Branch Router Upgrade Scenario.
			Figure 7-4. Upgraded Topology for Branch Office Connectivity.
			Implementation Plan
		Deploying Broadband Connectivity
			Satellite Broadband Information
			Figure 7-5. Municipal Wi-Fi Mesh Topology.
			Figure 7-6. WiMAX Topology.
			Figure 7-7. Satellite Topology.
			Cable Background Information
History of Cable Technology
	Figure 7-8. Cable Transmission Frequencies.
	Figure 7-9. Cable Transmission Frequencies.
	DSL Background Information
	Figure 7-10. DSL Transmission Frequencies.
	Table 7-1. DSL Variants
	Figure 7-11. DSL Infrastructures.
	PPPoA
	Configuring PPPoA
	Example 7-1. PPPoA Sample Configuration
	Verifying PPPoA
	Configuring Static Routing
		Figure 7-12. Static Route Reference Topology.
		Routing to the Internet
		Example 7-2. show ip protocols Output on Branch Router
		Example 7-3. show ip route Output on Branch
		Example 7-4. show ip protocols Output on the HQ Router
		Example 7-5. show ip route Output on the HQ Router
		Example 7-6. Verifying Connectivity to the HQ E-Mail Server
		Example 7-7. Verifying Connectivity to the ISP Website
		Floating Static Route
		Example 7-8. Configuring a Floating Default Static Route on Branch
		Example 7-9. Observe the Floating Static Route
		Example 7-10. Verify the Routing Table
		Example 7-11. Trace from the Branch LAN to the E-Mail Server
	Verifying Branch Services
		Figure 7-13. NAT Reference Topology.
		Configuring NAT
		Table 7-2. ip nat pool Global Command
		Table 7-3. ip nat inside source Global Command
		Table 7-4. ip nat Interface Command
		Example of NAT Configuration
		Example 7-12. Access List Used for NAT
		Example 7-13. NAT Pool Is Created
		Example 7-14. ip nat inside source Command for Dynamic NAT on the Branch Router
		Example 7-15. ip nat inside source static Command for Static NAT on the Branch Router
		Example 7-16. ip nat inside and ip nat outside Commands Issued on the Branch Router
		Verifying NAT
		Table 7-5. show ip nat translation Command
		Table 7-6. clear ip nat translation Command
		Example of NAT Verification
		Example 7-17. show ip nat translations Command
		Example 7-18. show ip nat statistics Command on the Branch Router
		Example 7-19. Generating NAT Traffic
		Example 7-20. Verifying the NAT Translations
		Example 7-21. Verifying the Static NAT Translation
		Example 7-22. Verifying the NAT Translations
		Example 7-23. Verifying the NAT Translations
		Example 7-24. Verifying the NAT Translations
		Example 7-25. Final NAT Configuration
		Verifying Other Services
		Figure 7-14. Overlapping LAN Subnet Address.
		Figure 7-15. Hot Standby Router Protocol.
	Verifying and Tuning IPsec VPNs
	IPsec Technologies
		Encapsulation Process
		Figure 7-16. IPsec Tunneling.
		Figure 7-17. IPsec Tunneling in Action.
		Figure 7-18. Updated Topology with IPsec Tunnel.
		IPsec Site-to-Site VPN Configuration
		Example 7-26. Sample IPsec VPN Configuration
		ISAKMP Policy
		IPsec Details
		VPN Tunnel Information
		Figure 7-19. A Crypto Map.
		VPN ACL
		Apply the Crypto Map
		Verifying an IPsec VPN
		Table 7-7. show crypto map Command
		Table 7-8. show crypto session Command
		Table 7-9. show crypto ipsec sa Command
		Example of IPsec VPN Verification
		Example 7-27. Initiating an IPsec VPN Tunnel
		Example 7-28. Debugging NAT in an IPsec VPN Tunnel
		Example 7-29. show ip access-lists 110 Command
		Example 7-30. Alter the NAT ACL
		Example 7-31. Test the VPN Link
		Example 7-32. Display the NAT Translations
		Example 7-33. Clear the NAT Translation and Test the VPN Link
		Example 7-34. Display Crypto Session Information
		Example 7-35. Display the Crypto Session with Detail Information
		Example 7-36. Display the Crypto IPsec SA Information
		Impact on Routing
	Configuring GRE Tunnels
		Figure 7-20. DMVPN.
		Generic Routing Encapsulation
		Figure 7-21. GRE and IPsec Encapsulation Process.
		Figure 7-22. Transport, Carrier, and Passenger Protocols.
		Figure 7-23. GRE and IPsec: Tunnel Within a Tunnel.
		Configuring GRE
		Table 7-10. tunnel source Command
		Table 7-11. tunnel destination Command
		Example of GRE Configuration
		Figure 7-24. Topology of the Example Scenario for GRE Configuration.
		Example 7-37. Disable EIGRP
		Example 7-38. Creating a Tunnel Interface on the Branch Router
		Example 7-39. Creating a loopback and Tunnel Interfaces on the HQ Router
		Example 7-40. show interface tunnel 0 on the Branch Router
		Example 7-41. Replacing the Crypto ACL on the Branch Router
		Example 7-42. Replacing the Crypto ACL on the HQ Router
		Example 7-43. Activating the GRE Tunnel
		Example 7-44. Verifying the IPsec VPN Tunnel
		Example 7-45. Verifying LAN to LAN Connectivity
		Example 7-46. Routing Table of the Branch Router
		Example 7-47. Enabling EIGRP on the Branch Router
		Example 7-48. Enabling EIGRP on the HQ Router
		Example 7-49. Verifying the EIGRP Neighbor
		Example 7-50. Verifying the EIGRP Routing Table
		Example 7-51. Verifying the EIGRP Routing Table
		Example 7-52. Verifying the IPsec VPN Information
		Example 7-53. Verifying Internet Connectivity
		Example 7-54. Final GRE over IPsec Configuration on the Branch Router
	Planning for Mobile Worker Implementations
		Connecting a Mobile Worker
		Components for Mobile Workers
		Business-Ready Mobile Worker and VPN Options
			Table 7-12. Characteristics of IPsec and SSL VPN Solutions
	Routing Traffic to the Mobile Worker
		VPN Headend Configuration
			Allowing IPsec Traffic
			Table 7-13. show ip inspect Command
			Table 7-14. show zone-pair security Command
			Figure 7-25. VPN Router Topology Example.
			Example 7-55. show ip interface Command on R1
			Example 7-56. show access-lists Command on R1
			Example 7-57. show ip inspect interfaces Command on R1
			Example 7-58. show zone-pair security Command on R1
			Example 7-59. Modifying the ACL on R1 to Support IPsec Protocols
			Defining Address Pools
			Table 7-15. ip local pool Command
			Example 7-60. ip local pool Command on R1
			Providing Routing Services for VPN Subnets
			Figure 7-26. Address Pool of Remote Users Is a Subnet of the Internal Network.
			Figure 7-27. Address Pool of Remote Users Is Separate from the Internal Subnet Address.
			Table 7-16. redistribute static Command
			Example 7-61. Configuring Static Route and Redistribution
			Example 7-62. Looking at the R2 Routing Table Following Redistribution of the Static Route
			Tuning NAT for VPN Traffic Flows
			Example 7-63. show ip nat statistics on R1
			Example 7-64. Configuring VPN User Traffic to Bypass Address Translation
			Verifying IPsec VPN Configuration
			Figure 7-28. Crypto Map Funnel.
			Example 7-65. Example of the show crypto map Command
			Figure 7-29. Cisco VPN Client.
			Figure 7-30. Cisco VPN Client Statistics.
			Figure 7-31. VPN Client Pinging an Internal Destination.
			Example 7-66. show crypto isakmp sa Command
			Example 7-67. show crypto session Command
			Example 7-68. show crypto engine connections active Command
			Figure 7-32. Successful Ping Between Remote Users and R2’s Loopback Interface.
		Reviewing Alternatives for Mobile Worker Connectivity
			Example 7-69. Routing Table on the Branch router with the Remote VPN Client
			Table 7-17. Alternative Solutions for Routing Remote Workers
			Example 7-70. Removing Static Routing and Configuring RRI
	Summary
	References
	Review Questions
Chapter 8. Implementing IPv6 in an Enterprise Network
	Introducing IPv6
		IPv4 Issues
		Features of IPv6
		IPv6 Packet Header
			Figure 8-1. IPv4 and IPv6 Headers.
			Extension Headers
			Figure 8-2. IPv6 Extension Headers.
			MTU Discovery
	IPv6 Addressing
		IPv6 Addressing in an Enterprise Network
			Figure 8-3. IPv6 Provides Four Times as Many Address Bits as IPv4.
			Figure 8-4. IPv6 Can Interconnect Many Different Devices.
		IPv6 Address Representation
			Example 8-1. When Configuring an IPv6 Address You Can Use the Shortened Form and the Prefix
		Interface Identifiers in IPv6 Addresses
			Table 8-1. Data-Link Layers that Support IPv6
			Figure 8-5. EUI-64 Format IPv6 Interface Identifier.
			Example 8-2. Specifying eui-64 Causes the Router to Create the Interface ID from Its Data Link Layer Address
		IPv6 Address Types
		IPv6 Global Unicast Addresses
			Figure 8-6. IPv6’s Larger Address Space Enables Address Aggregation.
			Figure 8-7. Example of an IPv6 Global Unicast Address.
		IPv6 Link-Local Unicast Addresses
			Figure 8-8. IPv6 Link-Local Address Structure.
			Example 8-3. A Link-Local Address is Automatically Created on all IPv6-Enabled Interfaces
		IPv6 Site-Local Unicast Addresses: Deprecated
			Figure 8-9. The Now-Deprecated Site-Local Addresses Were Equivalent to IPv4 Private Addresses.
		IPv6 Multicast Addresses
			Figure 8-10. IPv6 Multicast Address Structure.
		Solicited-Node Multicast Addresses
			Figure 8-11. Network for IPv6 Solicited Node Multicast Address Example.
		IPv6 Anycast Addresses
			Figure 8-12. IPv6 Anycast Address Structure.
		Comparing IPv6 Addresses with IPv4 Addresses
			Figure 8-13. Network for Summarization Example.
			Example 8-4. Loopback Interface Addresses Configured on R1
			Example 8-5. R2’s Routing Tables
			Example 8-6. Debug Output on R2
			Example 8-7. R2’s IPv4 Routing Table After Summarization
			Example 8-8. Debug Output on R2
			Example 8-9. R2’s IPv6 Routing Table After Summarization
	Configuring and Verifying IPv6 Unicast Addresses
		Figure 8-14. IPv6 Unicast Address Assignment Options.
		IPv6 Unicast Address Configuration and Verification Commands
		Static IPv6 Address Assignment
			Figure 8-15. Simple Network for Address Assignment Examples.
			Static Global Aggregatable Address Assignment
			Example 8-10. Configuration on R1
			Example 8-11. Configuration and Status of R1
			Assigning Multiple Global Aggregatable Addresses
			Example 8-12. R1’s Fast Ethernet 0/0 Configuration
			IPv6 Unnumbered Interfaces
			Example 8-13. IPv6 Unnumbered Configuration and Verification
			Static Link-Local Address Assignment
			Example 8-14. Configuration and Verification of Link-Local Address
		Stateless Autoconfiguration of IPv6 Addresses
			Figure 8-16. Neighbor Solicitation.
			Figure 8-17. Stateless Autoconfiguration Uses Router Solicitations and Router Advertisements.
			Figure 8-18. Duplicate Address Detection Process.
			Figure 8-19. Renumbering Is Simplified with Stateless Autoconfiguration.
			Figure 8-20. Network for Stateless Autoconfiguration Example.
			Example 8-15. Configuration and Verification of R1 for Stateless Autoconfiguration
			Example 8-16. Configuration and Verification of R2 for Stateless Autoconfiguration
			Example 8-17. Stateless Autoconfiguration Debug Output on R1
			Example 8-18. Observing Stateless Autoconfiguration Removal
			Example 8-19. Shutting Down R1’s Fast Ethernet 0/0 Interface
		Unicast Connectivity on Different Connection Types
			Unicast Connectivity on Broadcast Multiaccess Links
			Example 8-20. IPv6 Uses ICMPv6 for Link-Layer Address Discovery
			Example 8-21. IPv6 Solicited-Node Multicast Address
			Figure 8-21. Topology For Neighbor Discovery over Multiaccess Network Example.
			Example 8-22. IPv6 Neighbor Discovery Information
			Example 8-23. Pinging an Nonexistent IPv6 Address
			Example 8-24. Configuring a Static IPv6-to-MAC Map
			Unicast Connectivity on Point-to-Point Links
			Figure 8-22. Network for Point-to-Point Example.
			Example 8-25. Configuring IPv6 on R2’s Serial 0/1/0 Interface
			Example 8-26. R2’s Serial 0/1/0 IPv6 Address Uses MAC Address from Fast Ethernet 0/0
			Example 8-27. R2’s Serial 0/1/0 IPv6 Link-Local Address Can Be Manually Configured
			Example 8-28. IPv6 Addressing on a PPP Link
			Example 8-29. IPv6 Addressing on a PPP Link
			Unicast Connectivity on Point-to-Multipoint Links
			Figure 8-23. R1 Connects to R2 and R3 over a Multipoint Frame Relay Connection.
			Example 8-30. IPv6 over Frame Relay Requires a Frame Relay Map Entry
			Example 8-31. Adding Frame Relay Map Entries to R1 and R2
			Example 8-32. OSPFv3 Configuration for R1 and R2, for Frame Relay Example
			Example 8-33. Frame Relay Mapping of Link-Local Addresses
	Routing IPv6 Traffic
		IPv6 Routing Protocols
		Static Routing
			Static Route Configuration and Verification Commands
			Table 8-2. ipv6 route Command Parameters
			Table 8-3. show ipv6 route Command Parameters
			Static Route Configuration and Verification Example
			Figure 8-24. Network for Static Route Example.
			Example 8-34. Static Route Configuration and Verification
			Example 8-35. Static Route Verification
		RIPng
			RIPng Configuration and Verification Commands
			RIPng Configuration and Verification Example
			Figure 8-25. Network for RIPng Example.
			Example 8-36. Global Unicast Frame Relay Map Configuration
			Example 8-37. Verification of Connectivity Between Sites
			Example 8-38. Configuration of Link-Local Address Maps
			Example 8-39. Configuring RIPng
			Example 8-40. Verifying RIPng on R1
			Example 8-41. Configuring Frame Relay Maps with the broadcast Keyword
			Example 8-42. Debug Output
			Example 8-43. Adding R3’s Loopback Interface to RIPng
			Example 8-44. Turning Off Split Horizon on R1
		OSPFv3
			Similarities Between OSPFv2 and OSPFv3
			Table 8-4. OSPFv3 Packet Types
			Differences Between OSPFv2 and OSPFv3
			Figure 8-26. OSPFv2 and OSPFv3 Packet Headers.
			Figure 8-27. OSPFv3 Runs per Link Rather Than per IP Subnet.
			OSPFv3 Configuration and Verification Commands
			Table 8-5. ipv6 ospf area Command Parameters
			Table 8-6. area range Command Parameters
			Table 8-7. show ipv6 ospf neighbor Command Parameters
			Table 8-8. show ipv6 ospf interface Command Parameters
			OSPFv3 Configuration and Verification Examples
			Figure 8-28. OSPFv3 Configuration Example.
			Example 8-45. Configuration of Router 1
			Example 8-46. Configuration of Router 2
			Figure 8-29. Network for OSPFv3 Example.
			Example 8-47. Initial OSPFv3 Configuration on R1 and R2
			Example 8-48. OSPFv3 Verification
			Example 8-49. OSPFv3 Area 24 Configuration and Verification
			Example 8-50. OSPFv3 Area 13 Configuration and Verification
			Example 8-51. Configuration and Verification of Area 13 as a Totally Stubby Area
		EIGRP for IPv6
			EIGRP for IPv6 Configuration and Verification Commands
			Table 8-9. ipv6 summary-address eigrp Command Parameters
			EIGRP for IPv6 Configuration and Verification Example
			Figure 8-30. Network for EIGRP for IPv6 Example.
			Example 8-52. Initial Configuration of R1 and R3 for EIGRP for IPv6
			Example 8-53. Enabling the EIGRP for IPv6 Process on R1 and R3
			Example 8-54. Enabling the EIGRP for IPv6 Router ID on R1 and R3
			Example 8-55. Enabling EIGRP for IPv6 on R2 and R4
			Example 8-56. Verifying R4’s Routing Table
			Example 8-57. EIGRP for IPv6 Behavior
			Example 8-58. Configuring a Router as an EIGRP Stub
			Example 8-59. Verifying the EIGRP Stub Configuration
			Example 8-60. Configuring and Verifying EIGRP Summarization Configuration
		MBGP
			Figure 8-31. BGP with IPv4 as Both the Carrier and Passenger Protocol.
			Figure 8-32. BGP with IPv4 as the Carrier Protocol and IPv6 as the Passenger Protocol.
			Figure 8-33. BGP with IPv6 as Both the Carrier and Passenger Protocol.
			MBGP Configuration and Verification Commands
			Table 8-10. neighbor remote-as Command Parameters
			Table 8-11. address-family ipv6 Command Parameters
			MBGP Configuration and Verification Example
			Example 8-61. Configuration of a Router with One MBGP Neighbor
		IPv6 Policy-Based Routing
			IPv6 PBR Configuration and Verification Commands
			Table 8-12. route-map Command Parameters
			Table 8-13. permit Command Parameters
			IPv6 PBR Configuration and Verification Example
			Figure 8-34. Network for IPv6 PBR Example.
			Example 8-62. Configuring of Route Map on R1
			Example 8-63. Verification of Route Map on R1
			Example 8-64. show Command Output for Route Map on R1
		IPv6 Redistribution
			RIPng Redistribution
			RIPng Redistribution Configuration and Verification Commands
			RIPng Redistribution Configuration and Verification Example
			Figure 8-35. Network for RIPng Redistribution Example.
			Example 8-65. Verification of Connectivity Between Routers
			Example 8-66. RIPng Configuration and Verification on R1 and R2
			Example 8-67. Redistribute Connected Configuration and Verification
			Example 8-68. RIPng Configuration and Verification on R3
			Example 8-69. Changing Port Number for RIPng Process
			Example 8-70. Configuring and Verifying Redistribution on R1
			Example 8-71. Configuring Redistribution with a Route Map on R3
			Example 8-72. Verifying Redistribution with a Route Map on R3
			RIPng and OSPFv3 Redistribution
			RIPng and OSPFv3 Redistribution Configuration and Verification Commands
			Table 8-14. redistribute Command for OSPFv3 Parameters
			RIPng and OSPFv3 Redistribution Configuration and Verification Example
			Figure 8-36. Network for RIPng and OSPFv3 Redistribution Example.
			Example 8-73. Verifying Redistribution on RIPng Routers
			Example 8-74. Configuring Redistribution of Connected Routes on R3
			Example 8-75. Verifying Redistribution of Connected Routes on R4
			Example 8-76. OSPFv3 Redistribution Configuration on R4
			Example 8-77. Verifying OSPFv3 Redistribution on R2 and R3
			Example 8-78. Configuring RIPng and OSPFv3 Redistribution on R2 and R3
			Example 8-79. Verifying RIPng and OSPFv3 Redistribution on R1
			Example 8-80. Configuring and Verifying Redistribution Metric
			Example 8-81. Examining Resulting Paths
			Example 8-82. Examining Behavior When a Network Goes Down
			Example 8-83. Following the Routing Loop
			Example 8-84. Confirming the Routing Loop
			Example 8-85. Configuring Filtering to Prevent Routing Loop
			Example 8-86. Verifying That Filtering Did Prevent Routing Loop
			Example 8-87. Fixing and Verifying Suboptimal Routing Issue
			RIPng, OSPFv3, and MBGP Redistribution
			RIPng, OSPFv3, and MBGP Redistribution Configuration and Verification Commands
			RIPng, OSPFv3, and MBGP Redistribution Configuration and Verification Example
			Figure 8-37. Network for RIPng, OSPFv3, and MBGP Redistribution Example.
			Example 8-88. Configuring RIPng on R1 and R3
			Example 8-89. Configuring OSPFv3 on R4 and R2
			Example 8-90. Configuring BGP on R1 and R2
			Example 8-91. Verifying BGP on R2
			Example 8-92. BGP Routes in R2’s Routing Table
			Example 8-93. Configuring and Verifying RIPng Redistribution into BGP on R1
			Example 8-94. Configuring and Verifying OSPFv3 Redistribution into BGP on R2
			Example 8-95. Configuring and Verifying BGP Redistribution into RIPng on R1
			Example 8-96. Correcting and Verifying BGP Redistribution into RIPng on R1
			Example 8-97. Configuring and Verifying BGP Redistribution into OSPFv3 on R2
	Transitioning IPv4 to IPv6
		Table 8-15. RFCs Relating to IPv4 to IPv6 Transition
		Dual Stack
			Figure 8-38. Network for Dual-Stack Example.
			Example 8-98. Configuring and Verifying Dual Stack
		Tunneling
			Figure 8-39. Tunneling IPv6 Inside IPv4 Packets.
			Figure 8-40. Isolated Dual-Stack Host Can Tunnel IPv6 Inside IPv4.
			Figure 8-41. Tunnel Connecting IPv6 Networks over an IPv4 Network.
		Translation
			Figure 8-42. IPv4 - IPv6 Translation Mechanism.
	Tunneling IPv6 Traffic
		Manual IPv6 Tunnels
			Figure 8-43. A Tunnel Interface Runs over a Physical Interface.
			Manual IPv6 Tunnel Configuration and Verification Commands
			Manual IPv6 Tunnel Configuration and Verification Example
			Figure 8-44. Network Used for Configuration and Verification of a Manual Tunnel.
			Example 8-99. Confirming IPv4 Connectivity Between R1 and R2
			Example 8-100. Manual Tunnel Configuration on R1 and R2
			Example 8-101. Verifying Manual Tunnel Operation
			Example 8-102. Observing the Manual Tunnel
			Figure 8-45. Network Used for End-to-End Connectivity Through a Manual Tunnel.
			Example 8-103. Configuring RIPng, Including Across the Manual Tunnel
			Example 8-104. Verifying RIPng Across the Manual Tunnel
		GRE IPv6 Tunnels
			GRE IPv6 Tunnel Configuration and Verification Commands
			GRE IPv6 Tunnel Configuration and Verification Examples
			Figure 8-46. Network Used for Configuration and Verification of a GRE Tunnel.
			Example 8-105. GRE Tunnel Configuration on R1 and R2
			Example 8-106. Observing the GRE Tunnel
			Example 8-107. Verifying the GRE Tunnel Operation
			Figure 8-47. Network Used for End-to-End Connectivity Through a GRE Tunnel.
			Example 8-108. Configuring RIPng, Including Across the GRE Tunnel
			Example 8-109. Verifying RIPng Across the GRE Tunnel
			Figure 8-48. Network Used for End-to-End Connectivity Through a GRE IPv6 Tunnel.
			Example 8-110. GRE IPv6 Tunnel Configuration on R3 and R4
			Example 8-111. Configuring OSPFv3 Across the GRE IPv6 Tunnel
			Example 8-112. Configuring OSPFv3 Across the GRE IPv6 Tunnel
		6to4 Tunnels
			Figure 8-49. IPv4 Address Example Decimal to Hexadecimal Calculation.
			Figure 8-50. Automatic 6to4 Tunnel Formation and Address Format.
			6to4 Tunnel Configuration and Verification Commands
			6to4 Tunnel Configuration and Verification Example
			Figure 8-51. Network Used for Configuration and Verification of a 6to4 Tunnel.
			Figure 8-52. Conversion of IPv4 Loopback Addresses to Hexadecimal.
			Example 8-113. 6to4 Tunnel Configuration on R1 and R2
			Example 8-114. Verifying the 6to4 Tunnel Operation
			Example 8-115. Configuring Static Routes Between the 6to4 Tunnel Endpoints
			Example 8-116. Configuring Static Routes Across a 6to4 Tunnel
			Example 8-117. Configuring a Default Static Route Across a 6to4 Tunnel
		IPv4-Compatible IPv6 Tunnels
			IPv4-Compatible IPv6 Tunnel Configuration and Verification Commands
			IPv4-Compatible IPv6 Tunnel Configuration and Verification Example
			Figure 8-53. Network Used for Configuration and Verification of an IPv4-Compatible IPv6 Tunnel.
			Example 8-118. IPv4-Compatible IPv6 Tunnel Configuration on R1 and R2
			Example 8-119. Observing IPv4-Compatible IPv6 Tunnel Interface
			Example 8-120. Configuring a Static Route Across an IPv4-Compatible IPv6 Tunnel
		ISATAP Tunnels
			Figure 8-54. ISATAP IPv6 Address Format.
			ISATAP Tunnel Configuration and Verification Commands
			ISATAP Tunnel Configuration and Verification Example
			Figure 8-55. Network Used for Configuration and Verification of an ISATAP Tunnel.
			Example 8-121. ISATAP Tunnel Configuration on R1 and R2
			Example 8-122. Observing ISATAP Tunnel Interface
			Example 8-123. Verifying ISATAP Tunnel Operation
			Example 8-124. Configuring a Static Route Across an ISATAP Tunnel
	Translation Using NAT-PT
		Figure 8-56. NAT-PT Architecture.
		Static NAT-PT for IPv6
			Static NAT-PT Operation
			Figure 8-57. Static NAT-PT Operation.
			Static NAT-PT Configuration and Verification Commands
			Static NAT-PT Configuration and Verification Example
			Figure 8-58. Network Used for Configuration and Verification of Static NAT-PT.
			Example 8-125. Configuring Static NAT-PT
			Example 8-126. Verification and Further Configuration of Static NAT-PT
			Example 8-127. Further Verification of Static NAT-PT
			Example 8-128. Verification of Static NAT-PT on R2
		Dynamic NAT-PT for IPv6
			Dynamic NAT-PT Configuration and Verification Commands
			Table 8-16. ipv6 nat v4v6 source Command Parameters
			Table 8-17. ipv6 nat v4v6 pool Command Parameters
			Table 8-18. ipv6 nat v6v4 source Command Parameters
			Table 8-19. ipv6 nat v6v4 pool Command Parameters
			Dynamic NAT-PT Configuration and Verification Examples
			IPv6-to-IPv4 Dynamic NAT-PT Configuration and Verification Example
			Figure 8-59. Network Used for Configuration and Verification of Dynamic NAT-PT.
			Figure 8-60. Address Translations Performed in First Dynamic NAT-PT Example.
			Example 8-129. Configuring Dynamic NAT-PT
			Example 8-130. Verifying Dynamic NAT-PT
			Example 8-131. Continuing Verification of Dynamic NAT-PT from R4
			Example 8-132. Continuing Verification of Dynamic NAT-PT from R4
			IPv4-to-IPv6 Dynamic NAT-PT Configuration and Verification Example
			Figure 8-61. Address Translations Performed in Second Dynamic NAT-PT Example.
			Example 8-133. Confirming NAT-PT is Running on R1’s Interfaces
			Example 8-134. Configuring and Verifying IPv4 Connectivity
			Example 8-135. Configuring Dynamic NAT-PT
			Example 8-136. Verifying NAT-PT Configuration
			Example 8-137. Verifying Dynamic NAT-PT
			Example 8-138. NAT-PT Translation Table
	Summary
	References
	Review Questions
Appendix A. Answers to Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
Appendix B. IPv4 Supplement
	IPv4 Addresses and Subnetting Job Aid
		Figure B-1. IP Addresses and Subnetting Job Aid.
	Decimal-to-Binary Conversion Chart
		Table B-1. Decimal-to-Binary Conversion Chart
	IPv4 Addressing Review
		Converting IP Addresses Between Decimal and Binary
			Figure B-2. Converting an Octet of an IP Address from Binary to Decimal.
			Figure B-3. Converting IP Addresses Between Binary and Decimal.
		Determining an IP Address Class
			Figure B-4. Determining an IP Address Class from the First Few Bits of an Address.
			Table B-2. IP Address Classes
		Private Addresses
		Extending an IP Classful Address Using Subnet Masks
			Figure B-5. A Subnet Mask Determines How an IP Address Is Interpreted.
			Table B-3. IP Address Default Subnet Masks
		Calculating a Subnet Mask
			Figure B-6. Network Used in the Subnet Mask Example.
		Calculating the Networks for a Subnet Mask
			Figure B-7. Calculating the Subnets Shown in Figure B-6.
		Using Prefixes to Represent a Subnet Mask
			Table B-4. Representing Subnet Masks.
			Example B-1. Examples of Subnet Mask and Prefix Use on Cisco Routers
	IPv4 Access Lists
		IP Access List Overview
			Figure B-8. Access Lists Control Packet Movement Through a Network.
			Table B-5. IP Access List Numbers
		IP Standard Access Lists
			Figure B-9. Standard IP Access Lists Filter Based Only on the Source Address.
			Figure B-10. Inbound Standard IP Access List Processing.
			Figure B-11. Outbound Standard IP Access List Processing.
			Wildcard Masks
Wildcard Masks
	Table B-6. Access List Wildcard Mask Examples
	Access List Configuration Tasks
	IP Standard Access List Configuration
	Table B-7. Standard IP access-list Command Description
	Table B-8. ip access-group Command Description
	Implicit Wildcard Masks
	Example B-2. Standard Access List Using the Default Wildcard Mask
	Example B-3. Common Errors Found in Access Lists
	Configuration Principles
	Standard Access List Example
	Figure B-12. Network Used for the Standard IP Access List Example.
	Example B-4. Standard Access List Configuration of Router X in Figure B-12
	Location of Standard Access Lists
	Figure B-13. Location of the Standard IP Access List Example.
	Example B-5. Standard Access List to Be Configured on a Router in Figure B-13
	IP Extended Access Lists
		Extended Access List Processing
		Figure B-14. Extended IP Access List Processing Flow.
		Extended IP Access List Configuration
		Table B-9. ip access-group Command Description
		Example B-6. Use of the Keyword any
		Example B-7. Use of the Keyword host
		Table B-10. Extended IP access-list icmp Command Description
		Table B-11. ICMP Message and Type Names
		Table B-12. Extended IP access-list tcp Command Description
established Keyword in Extended Access Lists
	Table B-13. TCP Port Names
	Table B-14. Some Reserved TCP Port Numbers
	Table B-15. Extended IP access-list udp Command Description
	Table B-16. UDP Port Names
	Table B-17. Some Reserved UDP Port Numbers
	Extended Access List Examples
	Figure B-15. Network Used for the Extended IP Access List Example.
	Example B-8. Configuration on Router A in Figure B-15
	Figure B-16. Extended IP Access List Example with Many Servers.
	Example B-9. Configuration on Router A in Figure B-16
	Location of Extended Access Lists
	Restricting Virtual Terminal Access
		How to Control vty Access
		Figure B-17. A Router Has Five Virtual Terminal Lines (Virtual Ports) by Default.
		Virtual Terminal Line Access Configuration
		Table B-18. line vty Command Description
		Table B-19. access-class Command Description
		Example B-10. Configuration to Restrict Telnet Access to a Router
	Verifying Access List Configuration
		Table B-20. show access-lists Command Description
		Example B-11. Output of the show access-lists Command
		Table B-21. show ip access-list Command Description
		Table B-22. clear access-list counters Command Description
	IPv4 Address Planning
		Benefits of an Optimized IP Addressing Plan
			Figure B-18. The Telephone Network Uses an Addressing Hierarchy.
		Scalable Network Addressing Example
			Figure B-19. Scalable Addressing Allows Summarization.
		Nonscalable Network Addressing
			Figure B-20. Nonscalable Addressing Results in Large Routing Tables.
			Update Size
			Unsummarized Internetwork Topology Changes
			Summarized Network Topology Changes
	Hierarchical Addressing Using Variable-Length Subnet Masks
		Network Mask
			Use of the Network Mask
			Network Mask Example
			Example B-12. IP Routing Table for Network Mask Example
		Implementing VLSM in a Scalable Network
			Figure B-21. Network for the VLSM Example.
			Figure B-22. Center Block Is Range of Addresses for VLSM for Division X in Figure B-21.
		VLSM Calculation Example
			Figure B-23. Detailed IP Addressing of Division X in Figure B-21.
			LAN Addresses
			Figure B-24. Calculating Subnet Addresses for the LANs in Figure B-23.
			Serial Line Addresses
			Summary of Addresses Used in the VLSM Example
			Figure B-25. Binary Representation of the Addresses Used in Figure B-23.
		Another VLSM Example
			Figure B-26. Further Subnetting a Subnetted Address.
	Route Summarization
		Route Summarization Overview
			Figure B-27. Routers Can Summarize to Reduce the Number of Routes.
		Route Summarization Calculation Example
			Figure B-28. Summarizing Within an Octet, for Router D in Figure B-27.
		Summarizing Addresses in a VLSM-Designed Network
			Figure B-29. VLSM Addresses Can Be Summarized.
		Route Summarization Implementation
		Route Summarization Operation in Cisco Routers
			Figure B-30. Routers Use the Longest Match When Selecting a Route.
		Route Summarization in IP Routing Protocols
			Table B-23. Routing Protocol Route Summarization Support
	Classless Interdomain Routing
		CIDR Example
			Figure B-31. CIDR Allows a Router to Summarize Multiple Class C Addresses.
Appendix C. BGP Supplement
	BGP Route Summarization
		CIDR and Aggregate Addresses
			Figure C-1. Using CIDR with BGP.
		Network Boundary Summarization
		BGP Route Summarization Using the network Command
			Cautions When Using the network Command for Summarization
			Figure C-2. BGP Network for Summarization Examples.
			Example C-1. Sample BGP Configuration for Router C in Figure C-2
			Example C-2. More-Efficient BGP Configuration for Router C in Figure C-2
		Creating a Summary Address in the BGP Table Using the aggregate-address Command
			Table C-1. aggregate-address Command Description
			Figure C-3. BGP Network for Summarization Examples.
			Example C-3. Configuration for Router C in Figure C-3 Using the aggregate-address Command
			Example C-4. show ip bgp Command Output with Routes Suppressed
	Redistribution with IGPs
		Figure C-4. Router Running BGP Keeps Its Own Table, Separate from the IP Routing Table.
		Advertising Networks into BGP
		Advertising from BGP into an IGP
			ISP: No Redistribution from BGP into IGP Is Required
			Non-ISP: Redistribution from BGP into IGP Might Be Required
	Communities
		Community Attribute
		Setting and Sending the Communities Configuration
			Table C-2. set community Command Description
			Table C-3. neighbor send-community Command Description
			Figure C-5. Network for BGP Communities Example.
			Example C-5. Configuration of Router C in Figure C-5
		Using the Communities Configuration
			Table C-4. ip community-list Command Description
			Table C-5. match community Command Description
			Figure C-6. Network for BGP Communities Example Using Weight.
			Example C-6. Configuration of Router C in Figure C-6
			Example C-7. Configuration of Router A in Figure C-6
			Example C-8. show ip bgp Output from Router A in Figure C-6
	Route Reflectors
		Figure C-7. Full-Mesh IBGP Requires Many Sessions and, Therefore, Is Not Scalable.
		Figure C-8. When Router A Is a Route Reflector, It Can Propagate Routes Learned via IBGP from Router B to Router C.
		Route Reflector Benefits
		Route Reflector Terminology
		Route Reflector Design
		Route Reflector Design Example
			Figure C-9. Example of a Route Reflector Design.
		Route Reflector Operation
		Route Reflector Migration Tips
			Figure C-10. Bad Route Reflector Design That Does Not Follow the Physical Topology.
			Figure C-11. Good Route Reflector Design That Does Follow the Physical Topology.
		Route Reflector Configuration
Configuring the Cluster ID
	Route Reflector Example
		Figure C-12. Router A Is a Route Reflector.
		Example C-9. Configuration of Router A in Figure C-12
	Verifying Route Reflectors
		Example C-10. show ip bgp neighbors Output from Router A in Figure C-12
Acronyms and Abbreviations
                        

Similer Documents